Å“guaranteed Non convex Optimization Submodular Maximization Over Continuous Domains

Abstract

Maximizing non-monotone submodular functions is one of the most important problems in submodular optimization. A breakthrough work on the problem is the double-greedy technique introduced by Buchbinder et al. [7]. Prior work has shown that this technique is very effective. This paper surveys on double-greedy algorithms for maximizing non-monotone submodular functions from discrete domains of sets and integer lattices to continuous domains.

Keywords

  • Submodular
  • Non-monotone
  • Algorithm
  • Double greedy

This research was supported in part by the National Natural Science Foundation of China under grant numbers 11201439 and 11871442, and was also supported in part by the Natural Science Foundation of Shandong Province under grant number ZR2019MA052 and the Fundamental Research Funds for the Central Universities.

References

  1. Ahmed, S., Atamtürk, A.: Maximizing a class of submodular utility functions. Math. Program. 128(1–2), 149–169 (2011)

    MathSciNet  CrossRef  Google Scholar

  2. Bach, F.: Submodular functions: from discrete to continuous domains. Math. Program. 175(1–2), 419–459 (2019)

    MathSciNet  CrossRef  Google Scholar

  3. Balcan, M.-F., Harvey, N.-J.-A.: Learning submodular functions. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, pp. 793–802. ACM. San Jose, CA, USA (2011)

    Google Scholar

  4. Bian, A., Mirzasoleiman, B., Buhmann, J., Krause, A.: Guaranteed nonconvex optimization: submodular maximization over continuous domains. In: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, pp. 111–120. JMLR. Fort Lauderdale, Florida, USA (2017)

    Google Scholar

  5. Buchbinder, N., Feldman, M.: Deterministic algorithms for submodular maximization problems. ACM Trans. Algorithms 14(3), 1–20 (2018). Article 32

    MathSciNet  CrossRef  Google Scholar

  6. Buchbinder, N., Feldman, M., Naor, J.-S., Schwartz, R.: Submodular maximization with cardinality constraints. In: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, Oregon, Portland, pp. 1433–1452 (2014)

    Google Scholar

  7. Buchbinder, N., Feldman, M., Seffi, J., Schwartz, R.: A tight linear time (1/2)-approximation for unconstrained submodular maximization. SIAM J. Comput. 44(5), 1384–1402 (2015)

    MathSciNet  CrossRef  Google Scholar

  8. Chen, L., Feldman, M., Karbasi, A.: Unconstrained submodular maximization with constant adaptive complexity. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC, Phoenix, AZ, USA, pp. 102–113 (2019)

    Google Scholar

  9. Ene, A., Nguy\(\tilde{\hat{\text{e}}}\)n, H.-L.: Constrained submodular maximization: beyond \(1/e\). In: 2016 IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS, New Brunswick, NJ, USA, pp. 248–258 (2016)

    Google Scholar

  10. Ene, A., Nguy\(\tilde{\hat{\text{ e }}}\)n, H.-L., Vladu, A.: A parallel double greedy algorithm for submodular maximization (2018). https://arxiv.org/abs/1812.01591

  11. Feige, U., Mirrokni, V.-S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

    MathSciNet  CrossRef  Google Scholar

  12. Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS, pp. 570–579. Palm Springs, CA, USA (2011)

    Google Scholar

  13. Gharan, S.-O., Vondrák J.: Submodular maximization by simulated annealing. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1098–1117. Society for Industrial and Applied Mathematics, San Francisco, California, USA (2011)

    Google Scholar

  14. Gottschalk, C., Peis, B.: Submodular function maximization on the bounded integer lattice. In: Sanità, L., Skutella, M. (eds.) WAOA 2015. LNCS, vol. 9499, pp. 133–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28684-6_12

    CrossRef  Google Scholar

  15. Hartline, J., Mirrokni, V., Sundararajan, M.: Optimal marketing strategies over social networks. In: Proceedings of the 17th International Conference on World Wide Web, pp. 189–198. ACM. Beijing, China (2008)

    Google Scholar

  16. Hochbaum, D.S.: An efficient algorithm for image segmentation. Markov random fields and related problems. J. ACM 48(4), 686–701 (2001)

    MathSciNet  CrossRef  Google Scholar

  17. Hochbaum, D.S., Hong, S.P.: About strongly polynomial time algorithms for quadratic optimization over submodular constraints. Math. Program. 69(1), 269–309 (1995)

    MathSciNet  MATH  Google Scholar

  18. Kapralov, M., Post, I., Vondrák, J.: Online submodular welfare maximization: greedy is optimal. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1216–1225. SIAM, New Orleans, Louisiana, USA (2013)

    Google Scholar

  19. Niazadeh, R., Roughgarden, T.: Optimal algorithms for continuous non-monotone submodular and DR-submodular maximization. In: the 32nd Conference on Neural Information Processing Systems, NIPS, Montréal, Canada, pp. 9617–9627 (2018)

    Google Scholar

  20. Soma, T., Yoshida, Y.: A generalization of submodular cover via the diminishing return property on the integer lattice. In: Advances in Neural Information Processing Systems, pp. 847–855 (2015)

    Google Scholar

  21. Soma, T., Yoshida, Y.: Non-monotone DR-submodular function maximization. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, pp. 898–904. AAAI, San Francisco, California, USA (2017)

    Google Scholar

Download references

Author information

Authors and Affiliations

Corresponding author

Correspondence to Suning Gong .

Editor information

Editors and Affiliations

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Nong, Q., Gong, S., Fang, Q., Du, D. (2020). A Survey on Double Greedy Algorithms for Maximizing Non-monotone Submodular Functions. In: Du, DZ., Wang, J. (eds) Complexity and Approximation. Lecture Notes in Computer Science(), vol 12000. Springer, Cham. https://doi.org/10.1007/978-3-030-41672-0_10

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI : https://doi.org/10.1007/978-3-030-41672-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41671-3

  • Online ISBN: 978-3-030-41672-0

  • eBook Packages: Computer Science Computer Science (R0)

rodgersagard2002.blogspot.com

Source: https://link.springer.com/chapter/10.1007/978-3-030-41672-0_10

0 Response to "Å“guaranteed Non convex Optimization Submodular Maximization Over Continuous Domains"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel